Активационный анализ - significado y definición. Qué es Активационный анализ
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Активационный анализ - definición

Радиоактивационный анализ

АКТИВАЦИОННЫЙ АНАЛИЗ         
(радиоактивационный анализ) , метод качественного и количественного элементного анализа вещества, основанный на исследовании радиоактивного излучения нуклидов, образовавшихся под воздействием потока нейтронов, протонов, г-квантов и др.
Активационный анализ         

метод определения качественного и количественного состава вещества, основанный на активации атомных ядер и измерении их радиоактивного излучения. Впервые применен венгерскими химиками Д. Хевеши и Г. Леви в 1936. При проведении А. а. исследуемый материал в течение некоторого времени облучают (активируют) ядерными частицами (нейтроны, протоны, дейтроны, α-частицы и т. д.) или жёсткими γ-лучами, а затем с помощью специальной аппаратуры определяют вид и активность каждого из образующихся радиоактивных изотопов. Каждый радиоактивный изотоп обладает своими, свойственными только ему одному, характеристиками: периодом полураспада Т1/2 и энергией излучения Еизл, которые никогда не совпадают с аналогичными характеристиками др. изотопов; эти характеристики собраны в таблицы. Поэтому, если определить вид излучения и измерить Еизл и (или) Т1/2 изотопов, присутствующих в активированном образце, то по таблицам можно провести их идентификацию (т. е. установить порядковый номер и массовое число). Ядерные реакции, которые при выбранном способе активирования приводят к образованию тех или иных радиоактивных изотопов, обычно хорошо известны, и с их помощью легко найти, из каких исходных изотопов образовались обнаруженные в активированном образце радиоактивные изотопы, т. е. определить исходный состав исследуемого материала.

Для проведения количественного А. а. используют то обстоятельство, что активность радиоактивного изотопа после облучения образца пропорциональна числу ядер исходного изотопа, участвовавшего в ядерной реакции. Количественный А. а. может быть выполнен абсолютным или относительным способом. В первом случае измеряют абсолютную активность изотопа и, зная факторы, от которых зависит её значение, - время облучения, число активирующих частиц, проходящих через образец в единицу времени, эффективное сечение ядерной реакции (оно характеризует вероятность протекания ядерной реакции), изотопный состав химического элемента, Т1/2 образующегося радиоактивного элемента и время, прошедшее после прекращения облучения до момента измерения активности, - рассчитывают исходное содержание анализируемого элемента. Точность абсолютного метода невелика (20-50\% ), а выполнение его связано с рядом трудностей, поэтому он не получил широкого распространения. Во 2-м случае вместе с исследуемым образцом в строго идентичных условиях облучают специально приготовленный эталон или серию эталонов, содержание определяемого элемента в которых точно известно. Далее сравнивают активность образца с активностями эталонов и, учитывая, что количество радиоактивных атомов, образующихся при облучении, пропорционально содержанию исследуемого элемента, находят требуемое значение (при использовании серии эталонов определение обычно ведут по калибровочной кривой зависимости активности от содержания анализируемого элемента). Если таким путём необходимо определить в образце содержание нескольких элементов, то сравнивают активность каждого из активированных в образце изотопов с активностями соответствующих эталонов.

Для определения качественного и количественного состава с помощью А. а. можно применять инструментальный или радиохимический метод. Инструментальный А. а. заключается в исследовании излучения образовавшихся радиоактивных изотопов с помощью радиотехнической аппаратуры, обычно с использованием сцинтилляционных датчиков. Он проводится без разрушения образца, отличается экспрессностью, малой трудоёмкостью и экономичностью, но чувствительность его часто ниже, чем радиохимического метода. Радиохимический А. а. состоит в химическом разделении активированных элементов и определении активности каждого из них. Он пригоден для одновременного определения большого числа различных элементов, но требует больших затрат времени на выполнение химических операций.

Из-за того, что ядра многих изотопов легче всего активируются нейтронами, источники которых достаточно разнообразны и доступны, а А. а. на нейтронах обладает высокой чувствительностью, нейтронный А. а. получил наибольшее распространение по сравнению с А. а. на др. ядерных частицах или γ-лучах. Различия эффективных сечений отдельных изотопов в ядерных реакциях с нейтронами достигают сотен тысяч раз и более, поэтому нейтронный А. а. обладает высокой специфичностью. С помощью нейтронного А. а. определяют следовые количества примеси в материалах, используемых в реакторо- и ракетостроении (например,10-4\% гафния в цирконии), в полупроводниковой технике (чувствительность нейтронного А. а. на мышьяк, присутствие которого в германиевых транзисторах должно быть строго ограничено, достигает 10-10 - 10-11 г) и т. д. Нейтронный А. а. пригоден для определения таких редких элементов, как золото при содержании до 10-9 - 10-10\% и платина (до 10-5 - 10-6\% ).

Пример: определение с помощью нейтронного А. а. процентного содержания марганца в алюминиевом сплаве. Природный марганец состоит только из одного изотопа 56Mn, а алюминий - только из изотопа 27Al. При облучении нейтронами эти изотопы дают соответственно β-активные 57Mn с Т1/2 = 2,58 ч. и 28Al с Т1/2 = 2,3 мин. Из-за малости Т1/2 28Al практически нацело распадается через 15-20 мин после прекращения облучения, и активность сплава будет определяться присутствием в нём 57Mn. Если одновременно с анализируемым образцом провести в строго аналогичных условиях активирование ряда эталонов, процентное содержание марганца в которых известно, а затем измерить активность эталонов и исследуемого сплава, которую они будут иметь через определённый промежуток времени после облучения, то, построив кривую зависимости активности от процентного содержания марганца в сплавах, легко по активности анализируемого сплава найти требуемую величину. Чувствительность определения будет тем выше, чем больше используемый нейтронный поток и эффективность измерения активности на аппаратуре.

Распространение получил и А. а., основанный на ядерных реакциях, протекающих под действием γ-излучения. Так, измеряя поток нейтронов, испускаемых анализируемым образцом после облучения его γ-лучами, удаётся определить присутствие 10-4\% бериллия в пробе массой 100 г. Определение лёгких элементов, изотопы которых плохо активируются нейтронами (углерод, азот, кислород), может быть проведено путём измерения излучения изотопов, образующихся в результате облучения жёсткими γ-лучами ядер соответственно 12C, 14N и 16O. А. а. на заряженных ядерных частицах (протоны, дейтроны, (α-частицы и др.) также даёт в ряде случаев удовлетворительные результаты. Например, с помощью ускоренных протонов удаётся определить до 10-7\% бора в кремнии, 10-5\% ниобия в тантале и т. д. Однако из-за отсутствия удобных источников излучений и ряда др. факторов этот метод А. а. пока не получил такого широкого распространения, как нейтронный А. а.

Большое преимущество любого вида А. а. - отсутствие опасности загрязнения анализируемого вещества примесями, содержащимися в химических реактивах. Возможность анализа образцов без разрушения позволяет использовать А. а. для контроля чистоты готовых изделий, в криминалистике, археологии и т. д. Недостатки А. а. связаны главным образом с тем, что не все элементы хорошо активируются, и с необходимостью использовать дорогостоящее оборудование и соблюдать специальные меры предосторожности.

Лит.: Тейлор Д., Нейтронное излучение и активационный анализ, пер. с англ., М., 1965; Плаксин И. Н., Старчик Л. П., Ядерно-физические методы контроля вещественного состава. Ядерные реакции и активационный анализ, М., 1966; Кузнецов Р. А., Активационный анализ, М., 1967.

С. С. Бердоносов.

Активационный анализ         
Активационный анализ (Радиоактивационный анализ) — метод анализа вещества по характеру излучения радиоактивных изотопов, образующихся при бомбардировке исследуемого вещества ядерными частицами большой энергии (обычно нейтронами). Радиоактивационный анализ обладает высокой чувствительностью и применяется для определения примесей в металлах, сплавах, полупроводниковых материалах и других веществах.

Wikipedia

Активационный анализ

Активационный анализ (Радиоактивационный анализ) — метод анализа вещества по характеру излучения радиоактивных изотопов, образующихся при бомбардировке исследуемого вещества ядерными частицами большой энергии (обычно нейтронами). Предложен в 1936 году венгерскими химиками Д. Хевеши и Г. Леви. Радиоактивационный анализ обладает высокой чувствительностью и применяется для определения примесей в металлах, сплавах, полупроводниковых материалах и других веществах.

Ejemplos de uso de Активационный анализ
1. Нейтронно- активационный анализ дает возможность определить весь набор примесей в краске.
2. Для экспертизы уникальных картин проводится нейтронно-активационный анализ нескольких миллиграммов краски.
¿Qué es АКТИВАЦИОННЫЙ АНАЛИЗ? - significado y definición